Traveling waves in rotating Rayleigh-Bénard convection.

نویسندگان

  • Wooyoung Choi
  • Dilip Prasad
  • Roberto Camassa
  • Robert E Ecke
چکیده

A combined analytical, numerical, and experimental study of the traveling-wave wall mode in rotating Rayleigh-Bénard convection is presented. No-slip top and bottom boundary conditions are used for the numerical computation of the linear stability, and the coefficients of the linear complex Ginzburg-Landau equation are then computed for various rotation rates. Numerical results for the no-slip boundary conditions are compared with free-slip calculations and with experimental data, and detailed comparison is made at a dimensionless rotation rate Omega=274. It is found that the inclusion of the more realistic no-slip boundary conditions for the top and bottom surfaces brings the numerical linear stability analysis into better agreement with the experimental data compared with results using free-slip top/bottom boundary conditions. Some remaining discrepancies may be accounted for by the finite conductivity of the sidewall boundaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traveling waves in rotating Rayleigh-Bénard convection: analysis of modes and mean flow.

Numerical simulations of the Boussinesq equations with rotation for realistic no-slip boundary conditions and a finite annular domain are presented. These simulations reproduce traveling waves observed experimentally. Traveling waves are studied near threshold by using the complex Ginzburg-Landau equation (CGLE): a mode analysis enables the CGLE coefficients to be determined. The CGLE coefficie...

متن کامل

Bifurcations of rotating waves in rotating spherical shell convection.

The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs o...

متن کامل

Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection.

We investigate flow structures in rotating Rayleigh-Bénard convection experiments in water using thermal measurements. We focus on correlations between time series measurements of temperature in the top and bottom boundaries. Distinct anticorrelations are observed for rapidly rotating convection, which are argued to attest to heat transport by convective Taylor columns. In support of this argum...

متن کامل

Rotating Rayleigh-Bénard convection: Aspect-ratio dependence of the initial bifurcations.

The initial bifurcations in rotating Rayleigh-Bénard convection are studied in the range of dimensionless rotation rate 0 < Ω < 2150 for an aspect-ratio-2.5 cylindrical cell. We used simultaneous optical shadowgraph, heat transport and local temperature measurements to determine the stability and characteristics of the azimuthally-periodic wall convection state. We also show that the second tra...

متن کامل

Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.

Experimental and numerical data for the heat transfer as a function of the Rayleigh, Prandtl, and Rossby numbers in turbulent rotating Rayleigh-Bénard convection are presented. For relatively small Ra approximately 10(8) and large Pr modest rotation can enhance the heat transfer by up to 30%. At larger Ra there is less heat-transfer enhancement, and at small Pr less, similar 0.7 there is no hea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 69 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004